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Abstract

Background: Health resources are limited, which means spending should be focused on the people, places and
programs that matter most. Choosing the mix of programs to maximize a health outcome is termed allocative
efficiency. Here, we extend the methodology of allocative efficiency to answer the question of how resources should
be distributed among different geographic regions.

Methods: We describe a novel geographical optimization algorithm, which has been implemented as an extension
to the Optima HIV model. This algorithm identifies an optimal funding of services and programs across regions, such
as multiple countries or multiple districts within a country. The algorithm consists of three steps: (1) calibrating the
model to each region, (2) determining the optimal allocation for each region across a range of different budget levels,
and (3) finding the budget level in each region that minimizes the outcome (such as reducing new HIV infections
and/or HIV-related deaths), subject to the constraint of fixed total budget across all regions. As a case study, we
applied this method to determine an illustrative allocation of HIV program funding across three representative oblasts
(regions) in Ukraine (Mykolayiv, Poltava, and Zhytomyr) to minimize the number of new HIV infections.

Results: Geographical optimization was found to identify solutions with better outcomes than would be possible by
considering region-specific allocations alone. In the case of Ukraine, prior to optimization (i.e. with status quo
spending), a total of 244,000 HIV-related disability-adjusted life years (DALYs) were estimated to occur from 2016 to
2030 across the three oblasts. With optimization within (but not between) oblasts, this was estimated to be reduced
to 181,000. With geographical optimization (i.e., allowing reallocation of funds between oblasts), this was estimated to
be further reduced to 173,000.

Conclusions: With the increasing availability of region- and even facility-level data, geographical optimization is likely
to play an increasingly important role in health economic decision making. Although the largest gains are typically
due to reallocating resources to the most effective interventions, especially treatment, further gains can be achieved
by optimally reallocating resources between regions. Finally, the methods described here are not restricted to
geographical optimization, and can be applied to other problems where competing resources need to be allocated
with constraints, such as between diseases.
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Background
To maximize impact, funding bodies must distribute lim-
ited resources in an optimal fashion, a process called
allocative efficiency (AE). In recognition of this, the Joint
United Nations Programme on HIV/AIDS (UNAIDS)
Investment Framework for the Global HIV Response [1]
has long encouraged national governments to invest in
programs targeted to the populations at greatest risk of
HIV infection. Mathematical models have proven useful
in identifying the best way to go about this, with many
models available for evaluating the impact of HIV-related
interventions on population health outcomes [2–4]. Evi-
dence from applications of these models suggests that
considerable improvements could be achieved by reallo-
cating funds across the mix of HIV interventions [5].
Although there are sophisticated tools available to assist

countries in determining how to allocate funds between
programmatic areas, there have only been a limited num-
ber of studies that have addressed the question of how
to allocate funds for HIV responses between geographical
regions. Examples include the question of how to opti-
mally allocate antiretroviral services [6, 7] or healthcare
clinics [8–10], as well as case-specific models that have
been built to look at geographic prioritization of HIV
responses in Kenya [11, 12] and sub-Saharan Africa [13].
For malaria, Walker et al. [14] developed a transmission
model for all of Africa with 5×5 km “pixels” using interpo-
lated data on rainfall seasonality, mosquito composition,
and transmission intensity to define 55 unique “trans-
mission settings”, with funding to meet specific reduction
targets determined via simulated annealing. It was found
to be less than half as much for pixel-level targeting com-
pared to nationally uniform investments, illustrating the
potential for large efficiency gains using this type of anal-
ysis. Thus, while these studies have shed a great deal of
light on the magnitude of the gains that might be achieved
via geographically-targeted responses, their specificity
to particular countries and/or interventions limits the
potential for widespread use by policymakers. Given the
overwhelming evidence of geographical heterogeneity in
HIV epidemics [15] and hence the emphasis placed by
UNAIDS on the importance of geographical targeting
[16], a more generalized tool to support geographical opti-
mization of HIV responses would add considerable value
to HIV response planning [17]. In particular, to date, there
is no publicly available tool, adaptable to different national
or subnational contexts, that is capable of calculating the
distribution of funding between geographical areas that
would result in the best HIV epidemic outcomes.
In this paper, we describe and discuss a novel algo-

rithm for performing geographical analysis, which we
have implemented for the Optima class of models. These
models were originally developed for modeling HIV [18]
and have subsequently been extended to other diseases.

Optima models have been deployed in over 50 coun-
tries at the request of national governments seeking sup-
port in improving the allocative efficiency of their health
responses [19–22]. The methods that we present here
are completely generalized and can be used to determine
the optimal distribution of funds across programmatic
areas and geographical regions for HIV or any other dis-
ease, and do not depend on any specific features of the
Optima model suite. The geographical optimization algo-
rithm described here has been successfully used to inform
HIV resource allocation in Côte d’Ivoire [23] and to opti-
mize HIV spending across 44 countries comprising 80% of
the global HIV burden [20].
To further illustrate the algorithm, we present the

results of a computational study investigating how the
optimal allocation for a single intervention (antiretro-
viral treatment) varies across regions that differ solely
in terms of HIV prevalence. In addition, we present an
example of applying geographical analysis via OptimaHIV
to three oblasts in Ukraine, under the auspices of the
USAID HIV Reform in Action Project [24]. The oblasts
used for the study are shown in Fig. 1. These particu-
lar oblasts – Zhytomyr, Poltava, and Mykolayiv – were
chosen to allow for a comparison of costs and services
across regions representing low (0.34%), medium (0.42%),
and high (0.87%) HIV prevalences, respectively; hence,
results from these three oblasts can be considered some-
what illustrative for the country as a whole [24]. Thus,
this pilot study was conducted to determine what the gen-
eral findings for optimization across oblasts would be and
to estimate the potential gains from using this approach.
In practice, funding would be reallocated on the national
level and not only between these three oblasts. Further-
more, we emphasize that before a study such as this one
could be translated into actionable national-level policy
recommendations, it would be essential to perform addi-
tional data collection and complete a detailed exploration
of supply-side and demand-side constraints.

Methods
Each of the tools within the Optima suite is based on
a compartmental model. Each model is defined by a
network of compartments, corresponding to individuals
subdivided among different subpopulations, disease states
and care/treatment statuses. This can be considered an
adaptation of the common susceptible-infected-recovered
model structure [18, 25]. Figure 2 shows the compartmen-
tal model structure for Optima HIV. The rates at which
people move between compartments (or enter, via birth
or immigration, or leave, via death or emigration) depend
on attributes that may include age, sex and other charac-
teristics relevant to a disease. Interventions typically affect
transition rates; e.g., a testing program affects the rate at
which individuals move from undiagnosed to diagnosed
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Fig. 1 Oblasts of Ukraine used for the case study. Detailed epidemiological, expenditure, service, and delivery data were available for each oblast and
were used to calibrate the Optima HIV model. These three oblasts (Zhytomyr, Poltava, and Mykolayiv) were chosen to represent low, medium, and
high HIV prevalence regions, respectively. Map provided by and adapted with written permission from the USAID HIV Reform in Action Project [24]

Fig. 2 Compartmental structure of the Optima HIV epidemic model. This diagram shows the compartmental structure for a single population (e.g.,
females aged 25-34; the entire structure is duplicated for each population). Horizontal arrows represent movements between care states, while
vertical arrows represent movements between health states
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states, while a treatment program may affect death and
transmission rates.
There are three steps to an Optima analysis. First, the

model is calibrated to match known epidemiological and
behavioral data. For example, Optima HIV can be cali-
brated to HIV prevalence data points for subpopulations
at specific time points and specific geographical locations,
as well as new HIV infections, new HIV diagnoses, HIV-
related deaths, and the number of people in each stage
of the care cascade (i.e., diagnosed, linked to care, receiv-
ing treatment, and virally suppressed). For the Ukraine
analysis presented here, data inputs, assumptions and cal-
ibrations were conducted in consultation with local HIV
experts, including those from the USAID HIV Reform in
Action Project and the National Public Health Center. The
model was calibrated to each of the three study regions
separately. Epidemiological inputs and model calibrations
for each oblast are provided in Additional file 1, with fur-
ther details on the consultation process and data sources
provided in [24].
Second, Optima models incorporate nonlinear cost-

coverage-outcome functions that relate the spending on
HIV intervention programs to the coverage levels attained
by these programs and the resulting behavioral outcomes.
Thus, it is possible to define a package of interven-
tions that associates current health expenditure with the
present epidemic state, then examine how future projec-
tions change when funding is redistributed. Since inter-
ventions are implemented mechanistically and dynami-
cally in the model, the impact and effectiveness of each
intervention depends on both the state of the epidemic
and the coverage levels of the other interventions. For
example, the impact of a needle-syringe program will be
reduced if there is high coverage of opiate substitution
therapy (also called opiate agonist therapy); conversely,
the impact of a testing program will be amplified if there
is high enough funding for treatment programs so that
newly diagnosed individuals can immediately begin treat-
ment. Further detail on how cost-coverage and coverage-
outcome functions are defined in Optima HIV is pro-
vided in [18] and [25]. Detailed expenditure and cov-
erage data were available for each of the three oblasts
in Ukraine. Data were collected from a two-tiered sam-
pling approach to identify both regions (high, medium
and low prevalence) and facilities offering at least one of
nine HIV services available to residents. Regression-based
extrapolation methods were used to extend per-patient
unit costs and utilization to all facilities within each sam-
pled region (Additional file 1: Table S1).
Third, the Optima models contain an optimization

function that can be used to estimate the alloca-
tion of resources across programs that best addresses
national targets whilst considering various logistic, politi-
cal and ethical constraints. Further details are provided in

[18, 25–27]. Briefly, Optima HIV uses the adaptive
stochastic descent algorithm [28] to determine the alloca-
tion of funding across different programs that minimizes
the objective being optimized, such as the number of new
HIV infections, HIV-related deaths, and/or HIV-related
DALYs.

Defining regions
The key motivation for performing geographical opti-
mization is that data are often available at the subna-
tional level. Examples include surveys where responses
are coded by location, such as the Demographic and
Health Surveys (DHS) and AIDS Indicator Surveys (AIS)
[29, 30], Population-based HIV Impact Assessment
(PHIA) [31], and prevalence estimates made available via
antenatal and sexual health clinics [32]. In some cases
even continuous data are available, such as vegetation cov-
erage (which can be used as a proxy for urban versus
rural areas), although such data are typically more rele-
vant for diseases with a strong environmental component
such as malaria [14]. Where data are not directly avail-
able, spatial statistics methods exist in order to extrapo-
late between discrete data points and thus cover the full
area of interest [5, 33–35]. For example, DHS surveys
are conducted at individual sites, but their findings can
be interpolated to other locations that were not directly
measured.
The simplest way to include geographical divisions in

an Optima model is to add additional populations corre-
sponding to the different regions, modifying their prop-
erties where necessary to reflect data differences between
locations. In this way, geographical location is considered
a population attribute like age, sex, and so on.
However, there are significant practical limitations to

this approach. The run time for a single iteration of
the model is proportional to the number of populations,
while the number of iterations required for optimization
is roughly proportional to the square of the number of
programs. Thus, performing a geographical analysis by
duplicating the set of population groups and programs
for each of the N regions means that the analysis is likely
to take N3 times longer to run. While potentially fea-
sible for 2 or 3 regions, this approach quickly becomes
computationally impractical for even a modest number
of regions. Thus, the simplification is made to treat each
region as being independent. This can be used to simulate
a large number of regions, including at the international
level [20].
Ideally, a user would perform geographical analysis by

combining a number of existing and calibrated mod-
els into a “portfolio”. For example, this is typically the
approach taken to estimate optimal resource allocations
among a number of countries. However, at the subna-
tional level, sufficient data to inform individual models
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often do not exist. For example, while the net population
sizes and prevalences of both a country and its com-
ponent regions may be well known, the split of a key
population across these regions can be more difficult to
determine, especially in cases where these populations are
marginalized.
To cater for situations where little or no informa-

tion is available about the distribution of populations
across regions, as for example can be the case for key
populations in concentrated epidemics [36], we devel-
oped an automated algorithm for subdividing a single
national-level model into a number of region-level mod-
els. Thismethod partitions subpopulations among regions
proportionally, i.e.

sri = sisr
s
, (1)

where sri is the size of subpopulation i in region r, si =∑
r sri is the corresponding national-level size of subpop-

ulation i, sr = ∑
i sri is the total population size for region

r, and s = ∑
r
∑

i sri is the total national population size.
For example, if there are 10,000 people who inject drugs
(PWID) in a country of 1,000,000 people, and this country
has 300,000 people in region A, 500,000 in region B, and
200,000 in region C, then we assume the PWID popula-
tion is split by the ratio 3,000:5,000:2,000 across the three
regions. Of course, the terms “region” and “country” can
be replaced as appropriate for the level the partitioning is
applied at.
Disease prevalence is more complex and cannot be

scaled linearly. For example, if the national prevalence
of a particular disease is 40% and prevalence within a
particular region is 80%, then a national prevalence of
60% within a particular subpopulation could naively be
scaled to an invalid 120% value at the region level. To
avoid this issue, our automatic subdivisionmethod defines
population prevalence in each region as

pri = R
R − 1 + 1/pi

, (2)

R = pr (1 − p)
p (1 − pr)

, (3)

where pri is the prevalence for population i in region r,
pi = ∑

r (prisri) /si is the corresponding national-level
prevalence for population i, pr = ∑

i (prisri) /sr is the
total prevalence in region r, and p = ∑

r
∑

i (prisri) /s is
the total national prevalence. Note that these equations
require pi (national-level prevalence for each subpopula-
tion) and pr (overall prevalence for each region) as input
data.
The automatic subdivision method represented in

Equations (1) and (2) need only be used if specific data
on region-level subpopulation sizes and prevalences are
not available. In addition, model recalibration is typically

necessary if automatic subdivision is used. Of course,
the fewer region-specific data are used, the less informa-
tive the geographical analysis will be: ideally there would
be region-specific data on epidemiological and behav-
ioral indicators for each subpopulation as well as region-
specific data on program costs, impacts, and constraints.

Budget-outcome curves
Once the model for each region has been defined, each
one can be run and optimized independently from the
others. This allows themarginal impact of shifting funding
between regions to be determined, via a function called a
budget-outcome curve (BOC).
A BOC describes the relationship between a given

amount of funding in a region and the best possible “out-
come” that can be attained for that amount of funding
in that region. The outcome is user-defined and is typi-
cally the number of new infections, deaths, or disability-
adjusted life years (DALYs) incurred over a specified time
period; the outcome can also be a weighted sum of two or
more of these.
Figure 3 demonstrates how a BOC is constructed by

illustrating the process that was performed for Mykolayiv.
The algorithm proceeds as follows:

1. The baseline budget (i.e., the current allocation of
funding to each program) is optimized using
Optima’s built-in optimization algorithm to
determine a starting point for the BOC. By definition,
the optimal budget has a better (or, at worst, equal)
outcome compared to the baseline (top right panel).

2. The total budget is scaled both up and down, and
optimization is performed for each new budget, using
the optimized original budget (labeled “100%”) as a
starting point. This step is known as constructing an
optimal expansion pathway or investment staircase
[37]. In many cases the budget allocations are simply
scaled versions of each other (e.g., the 150% budget
allocation is almost exactly the 120% budget
allocation scaled by a factor of 1.25), but there are also
points at which the mix of programs changes (e.g., the
200% budget allocation includes funding for HCT,
while the 150% budget allocation does not). Since
real-world funding shifts are often relatively small, it
is especially important to sample points around the
current funding level. Because each point on the
BOC requires a budget optimization to be run, and
since optimizations are computationally expensive,
BOCs are typically calculated based on no more than
10–20 points (including zero spending and a very
large amount approximating unlimited spending).

3. The budget-outcome points determined in step 2 are
interpolated to create a continuous function. This
interpolation is typically done using piecewise cubic
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Fig. 3 Construction of the BOC for Mykolayiv. The first step is to optimize the baseline budget (top left), which improves the outcome (top right;
here using the example of minimizing the number of new HIV infections). The total budget is then scaled up and down and re-optimized (middle),
resulting in a “staircase” of outcomes that can then be interpolated, thereby forming the BOC, with spending on the x-axis and the outcome (new
infections) on the y-axis (bottom). Abbreviations: ART, antiretroviral therapy; HCT, HIV counseling and testing; NSP, needle-syringe program; OST,
opiate substitution therapy; BOC, budget-outcome curve

Hermite interpolating polynomials (“PCHIP”), a type
of spline created by fitting smooth polynomials to the
data [38].

Several example BOCs are shown in Fig. 4. Formally, a
BOC can be defined as the function Or(br) for region r,
where the estimate of the outcome Or for any given input
budget br is achieved via spline interpolation.
Since a BOC describes the relationship between budget

and outcome, it is closely related to the definition of an

incremental cost-effectiveness ratio (ICER). In particular,
the negative of the first derivative of a BOC is the incre-
mental change in outcome for an incremental change
in budget, and is thus the reciprocal of an ICER. The
usual definition of the ICER is used to summarize the
cost-effectiveness of a single health care intervention by
comparing the outcomes obtained under two alterna-
tives (implementing vs. not implementing the interven-
tion) with the cost of implementation [39, 40]. By con-
trast, this variant summarizes the cost-effectiveness of
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Fig. 4 Example budget-outcome curves (BOCs). The top panel shows the BOC for each oblast, including the optimally-allocated annual baseline
spending amount (circle) and the geographically-optimized annual spending amount (star) for the outcome of minimizing new HIV infections. The
bottom panel shows the estimated cost per infection averted, which is the inverse of the negative first derivative of the BOC and effectively
equivalent to a type of incremental cost-effectiveness ratio. Note that, at the optimum, this quantity is equal across the three BOCs

an incremental change in the entire response in a given
region r, and compares the outcomes of two alterna-
tives: allocating resources of br to region r vs. allocating
resources of br + �br (where �br represents a small
increase in the budget to region r).

Optimizing across regions
The final step of geographical analysis is to decide how to
optimally distribute a fixed budget B across the regions. If
br is the budget for region r and Or(br) is the outcome in
region r given budget br , then this problem is equivalent
to minimizing net outcomeO = ∑

r Or(br), subject to the
constraint that

∑
r br = B. Without the constraint that

the total budget B remains constant, for n regions, pos-
sible allocations lie in an n-dimensional hyperspace (e.g.,
if there are 10 programs in the budget, the space of all
possible allocations will be a 10-dimensional cube), and
the solution with the best outcome would simply be to
have maximum funding in all regions. However, with the

constraint of fixed total budget, solutions are restricted to
lying on an (n− 1)-dimensional hyperplane. For example,
the 2D hyperplane corresponding to the 3D solution space
for Ukraine is shown in Fig. 5.
Although this looks like a relatively straightforward

minimization problem, dangers still lurk. The naïve
expectation is that a geographically optimal distribution of
funds is equivalent to finding the point where the deriva-
tives of all BOCs are equal (as illustrated in Fig. 4), i.e.:

dO1(b1)
db1

= dO2(b2)
db2

= ... = dON (bN )

dbN
. (4)

At this point, incrementally shifting any funding from one
region to another would have zero change in net outcome.
However, this condition is neither necessary nor sufficient
to ensure the global optimum. It is not necessary because
there may be regions x and y such that (dOx(bx)/dbx) >(
dOy(by)/dby

)
for all bx and by (so the equality never
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Fig. 5 Solution-space hyperplane. Each axis shows the annual spending for each oblast, such that the total spending remains constant; the
logarithmic color scale shows the ratio of the outcome for each possible inter-region allocation (here, the cumulative number of new HIV infections
from 2016–2030), compared to the optimal inter-region allocation. In particular, outcomes are shown for the baseline allocation (circle) and the
geographically-optimized allocation (star), indicating that the baseline inter-region allocation is already very close to optimal

holds), and it is not sufficient because there may be mul-
tiple points that satisfy this condition. This is because
although BOCs are almost always monotonic themselves
(i.e., always decreasing), their derivatives are often not.
For example, in Fig. 4, the cost per infection averted in
Mykolayiv is approximately US$19,950 for annual spend-
ing amounts of both US$4.0m and US$4.5m, meaning that
there is not necessarily a unique solution for the point at
which the cost per infection averted is the same in each
region.
To solve this, we employ a type of greedy grid search

algorithm. The principle of the algorithm is to start with
no funding allocated to any region and then to progres-
sively allocate funding to the region where it has the
most impact until the entire available budget B has been
allocated. More precisely, the algorithm works as follows:

1. Begin by defining a region array r =[ 1, 2, . . . ,N],
where N is the number of regions. Next, initialize the
budget for each region to $0, i.e., define an array
b0 = [

b01, b02, . . . , b0N
] =[ 0, 0, . . . , 0]. Here, the

superscript 0 represents the number of iterations of
the algorithm; thus bjr refers to the budget allocated
to region r at the j -th iteration of the algorithm.

2. Choose a number K of trial budgets and a
corresponding array, k =[ 1, 2, ...K]. Next, create an

(initially) identical array of trial budget values for
each region, xr = [

xkr
]K
k=1, from $0 up to the

maximum total budget B, where

xkr = exp

⎛

⎝
log

(
B k
K

)
+ log(B) k

K

2

⎞

⎠ . (5)

The spacing of points defined by Equation 5 is used
in order to place equal emphasis on absolute funding
amounts (the linearly-spaced first term of the
equation, which ensures sufficient sampling for large
budgets) and relative funding amounts (the
exponentially-spaced second term of the equation,
which ensures sufficient sampling for small budgets).
For example a choice of K = 2000 and a total budget
of $10 million roughly corresponds to average
increments of $5000, with an initial increment of
$100 and a final increment of $40,000.

3. For each region r, use the corresponding
budget-outcome curve Or to evaluate the outcome
(e.g., number of new HIV infections) for every trial
budget value xkr , i.e. Or(xkr ). This step generates
N × K points, which is the solution space over which
the grid search is performed.
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4. For each iteration j of the algorithm, perform the
following steps:

(a) For the set of trial budgets for each region, xr ,
calculate the trial budget increments,
ikr = xkr − bjr , and exclude any trial budgets for
which (i) funding for a region would remain
the same or decrease (i.e., ikr ≤ 0), or (ii)
accepting the increment would exceed the
total available budget (i.e.,

∑N
r=1 b

j
r + ikr > B).

If there are no trial budgets remaining after
this step, terminate the loop.

(b) For each remaining trial budget for each
region, xkr ∈ xr , calculate the marginal
cost-effectivenessM(xkr ):

M(xkr ) = Or(b
j
r) − Or(xkr )
xkr − bjr

. (6)

Since funding for a region cannot decrease
(i.e., xkr − bjr > 0), and, in the real world, more
funding cannot lead to a worse outcome (i.e.,
Or(b

j
r) ≥ Or(xkr )), it follows that marginal

cost-effectiveness cannot be negative (i.e.,
M(xkr ) ≥ 0).

(c) Select the region r∗ and funding level k∗ that
has the greatest marginal cost-effectiveness,
i.e., whereM(xk∗

r∗ ) = max
(
M(xkr )

)
for all

regions r and remaining budget levels k. (In
the case of a tie, i.e. if two or more regions
have the same marginal cost-effectiveness,
allocate funding to the region with the least
funding.)

(d) Allocate the budget xk∗
r∗ to region r∗ (i.e. set

bj+1
r∗ = xk∗r∗ ).

5. If necessary (i.e., if the allocated budget does not
exactly match the total budget B due to the discrete
steps of x), rescale all regional budgets br so their
sum equals the total budget, i.e. b′

r = br B∑N
r=1 br

.

Despite the large number of individual calculations in
this algorithm, since it does not require the model itself to
be rerun, it is quite computationally efficient. For exam-
ple, in the Ukraine case study (N = 3 and K = 2000), this
algorithm takes several seconds to run on a standard lap-
top, compared with roughly an hour to compute the three
BOCs.

Implementation in Optima HIV
The geographical analysis methods described here have
been implemented in the standard Optima HIV soft-
ware distribution. Optima HIV is an open-source, pub-
lic domain software tool that is made freely available

for both users (via the webapp, http://hiv.ocds.
co) and developers (via GitHub, http://github.
com/optimamodel/optima). Instructions for use are
available at ocds.co/user-guide. Figure 6 demon-
strates the connection between the steps outlined
above and their implementation in the Optima HIV
software.

Results
Here we present results from applying the algorithm
described above to two cases: a computational analysis of
synthetic data corresponding to regions of smoothly vary-
ing prevalence, and the previously discussed case study
covering three oblasts in Ukraine.

Computational analysis
This section describes an exploration of the geographical
algorithm using synthetic data. For this example, we cre-
ated a simple epidemic model of 1.8 million people, split
approximately equally between general population males
and females aged 15-49. HIV prevalence in 2018 was set
to 1.5% in males and 2.0% in females, for a total of approx-
imately 34,000 PLHIV. HIV transmission was assumed
to occur solely through heterosexual partnerships, with
an assumed 100 acts per year with 14% condom use;
condoms were assumed to be 95% effective and per-act
transmission rates without condoms were assumed to be
0.08% for females (i.e., receptive acts) and 0.04% for males
(i.e., insertive acts), corresponding to an average annual
probability of infection for a serodiscordant partnership
of approximately 6.9% for females and 3.5% for males. The
only interventions in the model were (1) HIV testing and
counseling (including linkage to care), representing 6% of
people being tested per year, and (2) antiretroviral therapy
(including treatment initiation and adherence), covering
3,200 people (corresponding to coverage of 10%).
From this “default” model, 100 separate regions were

created in a 10×10 grid. All regions were identical to the
model described above, except that the number of acts
was modulated by a factor of 5 from the edges to the cen-
ter (i.e., from 50 to 250 acts per year). This created a nearly
100-fold difference in prevalence by 2030: from 0.3% in the
corners to 23% in the center (Fig. 7A). Initial funding was
set to be equal across all regions at US$7m.
HIV testing was held constant and geographical opti-

mization was applied to the funding of ART across the
100 regions. As shown in Fig. 7B, funding for ART did
not scale linearly with prevalence. Although (final) preva-
lence varied smoothly from 0.3% to 23%, funding instead
showed three distinct levels: the 40 lowest-prevalence
regions received zero funding; another 28 regions received
moderate funding (roughly equal to the initial fund-
ing value of US$7m), while the 32 highest prevalence
regions received roughly double their initial funding.

http://hiv.ocds.co
http://hiv.ocds.co
http://github.com/optimamodel/optima
http://github.com/optimamodel/optima
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Fig. 6 Interface for running geographical optimizations. Yellow notes indicate the purpose of each section of the interface: the first section of the
geographical analysis interface allows users to create a portfolio; the second section allows them to define regions, and the final section allows them
to generate BOCs, run geographical optimization, and export the results. Image adapted from the public domain Optima HIV webapp, http://hiv.
ocds.co

Fig. 7 Nonlinearities in a hypothetical example of geographical optimization. Initial HIV prevalence (left) and the resultant optimal budget allocation
(right) for 100 contiguous regions

http://hiv.ocds.co
http://hiv.ocds.co
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These nonlinearities result from positive feedback effects
within the population, since the impact of treatment
(especially treatment-as-prevention) depends on both the
initial differences between each region as well as the dif-
ferent dynamics that result from these initial differences.
The reallocation of funds reduced new infections and
deaths by 5.7% compared to uniform funding. This exam-
ple illustrates that even in a simple situation, the optimal
geographical distribution of funding is not necessarily
apparent from epidemiological data alone.

Application to Ukraine
This section describes the application of geographical
analysis to the three Ukrainian oblasts of Mykolayiv,
Poltava and Zhytomyr. Each oblast included 11 subpop-
ulations: female sex workers (FSW); clients of female sex
workers; men who have sex with men (MSM); people who
inject drugs (PWID); prisoners; and general population
males and females aged 0–14, 15–49, and 50+ years. Each
oblast also included five interventions: antiretroviral ther-
apy (ART, which corresponds to treatment rates), HIV
counseling and testing (HCT, which increases diagnosis
rates), condom programs (which increase condom usage
in casual partnerships), needle-syringe programs (NSP,
which reduce needle sharing rates among PWID), and
opiate substitution therapy (OST, which reduces injec-
tions among PWID). All programs were implemented in
each of the oblasts, although coverage was allowed to be
reduced to 0%, except for ART, which was not allowed
to decrease as a proportion of the total budget. Further
details are provided in Additional file 1.
The results presented here include constraints on the

algorithm to reflect logistical, ethical, and political con-
siderations, namely: once people begin ART, they cannot
be removed; programs cannot exceed maximum coverage
levels, typically 85-95% depending on the program and
target population group; and, as described below, in one
analysis, funding to testing was not allowed to decrease.
Thus, the BOCs which the optimizations shown here are
based on do not necessarily represent the mathematically
optimal solutions. (In contrast, the BOCs shown in Fig. 4
are mathematically optimal, for the special case of min-
imizing new infections only.) Here, optimizations were
performed to minimize DALYs. DALYs were calculated
using the “hybrid approach” [41], i.e. the sum of years lived
with disability (i.e., the number of people in each disease
state multiplied by the disutility of that disease state) and
sum of years of life lost (i.e., life expectancy minus age at
death) [42].
Figure 8 shows the budget allocations and correspond-

ing outcomes for each oblast given baseline spending,
intra-oblast optimized spending, and inter-oblast (geo-
graphically) optimized spending, as well as results with
spending on HIV testing constrained, due to in-country

political constraints. Intra-oblast optimization results in
a more targeted response, focusing on just two key pro-
grams in the unconstrained case (antiretroviral therapy
and needle-syringe programs). The intuitive explanation
for this result is that ART and NSP are the most cost-
effective programs for reducing HIV-related deaths and
new HIV infections, respectively, and these are the two
main contributors to DALYs. Shortening the 15-year time-
frame of the analysis would shift funding towards treat-
ment; conversely, lengthening the timeframe would shift
funding towards prevention (specifically, needle-syringe
programs).
In each case, the unconstrained optimization led to

manymore DALYs averted than the constrained optimiza-
tion (24,000, 6,000, and 2,000 additional DALYs averted
for Mykolayiv, Poltava, and Zhytomyr, respectively). Note
that although treatment and needle-syringe programs
have the highest impact in terms of averting new HIV
infections and HIV-related deaths, funding other pro-
grams, especially opiate substitution therapy, is highly
desirable due to the many other benefits that these pro-
grams may have in addition to averting HIV infections.
This indicates the need for increased resources to fund
a sustainable and multi-purpose response. The defund-
ing of the HIV counseling and testing program in the
unconstrained case was due to the fact that in each
oblast, there were sufficient numbers of PLHIV who were
diagnosed but not receiving treatment such that ART
could be scaled up without any additional investment
in testing.
Geographical (inter-oblast) optimization shifts

resources away from the oblast with lowest HIV preva-
lence (Zhytomyr) and towards the oblasts with higher
HIV prevalence (Poltava and Mykolayiv). As shown in the
right panel, intra-oblast optimization reduces the total
number of DALYs across all oblasts; compared to intra-
oblast optimization, geographical optimization results in
further moderate improvement in Mykolayiv and a small
improvement in Poltava, at the expense of more DALYs
in Zhytomyr. According to the optimization analysis,
allocation shifts both within and between oblasts were
relatively small, indicating that Ukraine’s HIV response in
these three oblasts is already relatively close to optimal.
Oblast-level optimization produces large forecasted

reductions in DALYs over 2016-2030 in Mykolayiv (from
120,000 to 86,000), with smaller but still notable changes
in Poltava (from 80,000 to 55,000) and Zhytomyr (from
46,000 to 41,000). Geographical optimization increases
DALYs in Zhytomyr (to 47,000), but reduces them to
74,000 and 53,000 in Mykolayiv and Poltava, respec-
tively. Thus, intra-oblast optimization reduces DALYs
from 246,000 to 182,000, a reduction of 26%, while geo-
graphical optimization reduces it to 174,000, a further
reduction of 4.4%. The relatively large improvement asso-
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Fig. 8 Baseline and optimal budget allocations with corresponding outcomes for each oblast. Optimal budget allocations are shown for both
intra-oblast optimization (where the budget for that oblast is the same as baseline) and for geographical optimization (where funding is allowed to
shift between oblasts)

ciated with intra-oblast optimization in the absence of
constraints is due to the high effectiveness of the NSP
intervention and its relatively low current funding levels,
while the relatively small subsequent improvement from
inter-oblast optimization is due to (a) funding already
being well allocated between the three regions, (b) the
similarity of the epidemic in each oblast and, as a con-
sequence, (c) the interchangeability between oblasts of

putting additional people on treatment (or enrolling them
in the NSP).

Discussion
Geographical targeting of HIV responses has become a
dominant theme in the discussions and strategic think-
ing of both national and international health and devel-
opment agencies. Both UNAIDS and the World Health
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Organization have increasingly emphasized the need
to understand epidemic hotspots when designing HIV
responses [16]. Two of the largest funders of the HIV
response – the President’s Emergency Plan for AIDS Relief
(PEPFAR) and the Global Fund to Fight AIDS, Tubercu-
losis and Malaria – have both pledged to focus efforts
on pinpointing the geographic areas at sub-national levels
with the highest disease burden in every country, so
as to maximize resources and reach epidemic control
[43, 44]. These efforts are also echoed in the national
strategic plans of governments [45–47].
As a result, there is growing pressure to develop more

geographically intricate models to guide decisions about
how to allocate funding for HIV responses to the regions
where it will have the greatest impact. The methods for
geographical analysis presented here can be used to sup-
port the push towards further granularity in epidemic tar-
geting [48]. Without this increased resolution, important
inhomogeneities in socioeconomic status [49], cultural
attitudes, rural-urban settings, andmany other factors can
be lost in the analysis, potentially leading to inaccuracy in
models and subsequent policy advice.
An important use case for these methods is in guiding

the allocation of funds across countries, thus enabling
allocative efficiency to be conducted on a multi-country
level rather than just an intra-country level. Such an anal-
ysis may be useful for international funding organizations
that determine resource allocation policies not just in isolated
countries but across entire regions. A recent study by Kelly
et al. [20] illustrates that large potential gains – up to 1.9
million (33%) additional infections averted with no addi-
tional funding – might come from such a redistribution.
The geographical optimization method described here

is one of many possible implementations; others have
been investigated elsewhere [11]. Indeed, with the com-
putational costs of applying the algorithm in full, it is an
active area of research to seek alternate heuristic meth-
ods that trade accuracy for speed [12]. Even within the
Optima suite of models, the geographical analysis algo-
rithm has been fine-tuned for individual applications such
as malaria [21] and nutrition [50]. However, all variants
of geographical analysis implemented across the Optima
suite share a core approach: a total budget is distributed
across multiple independent regions by using a set of
budget-outcome curves. Because budget-outcome curves
are agnostic to the quantity being varied, they need not
only be applied to allocating between different regions;
they could even be used to allocate funding between dif-
ferent disease areas (e.g., one could define a diabetes BOC
and a cardiovascular disease BOC, and optimally allocate
funding between the two accordingly).
There are several limitations to the methodology pre-

sented here. First, as with all modeling, the quality of the
outputs will be limited by the quality of the inputs, which

varies considerably between countries and regions. This
issue is especially pronounced for geospatial analyses,
however, due to their much larger requirements for data.
Although there is uncertainty in the inputs used in this
model, we have not performed sensitivity or uncertainty
analyses, which are important for ensuring the relia-
bility of modeling results when used to inform real-
world decision-making. Second, the approach of defining
independent BOCs for each region assumes there is
no interaction between regions. Although a reasonable
assumption for medium- and large-scale regions (such as
provinces or countries), this assumption becomes prob-
lematic if regions are defined at a fine resolution (for
example, a square-kilometer grid). Finally, although the
algorithm described here has been used at scale – includ-
ing for 44 countries in [20], and for nearly 100 subna-
tional districts for individual country studies – it has not
yet been used for geographical analyses with thousands
or hundreds of thousands of regions [48]. Although the
algorithm is computationally efficient in that its compu-
tation time scales linearly with the number of regions,
since it is nonetheless computationally intensive for each
region, there is a practical upper limit on how many
regions it can be applied to (approximately 50 to 500 for
a typical laptop, or 1,000 to 10,000 for a typical high-
performance computer). Thus, to optimize a large number
of regions, additional steps – such as grouping regions
hierarchically, and performing geographical optimizations
at successively granular levels – are likely to be required.
The level of detail required for an informative geograph-
ical analysis is determined by the spatial heterogeneity of
the disease or condition being modeled, which in turn is
determined largely by its latency and its dependence on
geographical factors. For example, cholera and malaria,
which have relatively short latencies and are highly depen-
dent on geographical factors (such as access to clean
drinking water and vegetation coverage), are likely to
require a finer geographical scale than conditions such
as HIV and tuberculosis, which have longer latencies
and more dependence on social rather than geographical
factors.
Conclusions
This study demonstrates a method for determining
geographical optimization of limited resources, illus-
trated with a case study of Ukraine. Critically, the
methods applied here, especially the concept of the
budget-outcome curve, are completely general and can
be applied beyond geographical optimization to any
problem where competing resources need to be allo-
cated with constraints. Future applications will use this
methodology to determine optimal resource allocations
at higher spatial resolutions, and to determine tradeoffs
in resource allocations between HIV, tuberculosis, and
malaria.
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23. Barańczuk Z, Estill J, Reporter I, Hussain A, Kedziora D, Kerr CC, Wilson
DP, Shubber Z, Mziray E. HIV Investment in Côte d’Ivoire : Optimized
Allocation of HIV Resources for a Sustainable and Efficient HIV Response.
Washington, DC: World Bank Group; 2016.

24. The USAID HIV Reform in Action Project. HIV Investment Case Study for
Ukraine: Evaluation of Program Costs, Service Quality, and Resource
Allocation for HIV Expenditure in 2015. Kyiv: HIVRiA; 2018.

25. Kerr CC, Stuart RM, Kedziora DJ, Brown A, Abeysuriya R, Chadderdon G,
Nachesa A, Wilson DP. Optima HIV methodology and approach. In:
Tackling the World’s Fastest Growing HIV Epidemic: Gateways to Efficient
and Effective HIV Responses in Eastern Europe and Central Asia.
Washington DC, USA: The World Bank Group; 2019.

26. Shattock AJ, Kerr CC, Stuart RM, Masaki E, Fraser N, Benedikt C, Gorgens
M, Wilson DP, Gray RT. In the interests of time: improving HIV allocative
efficiency modelling via optimal time-varying allocations. J Int AIDS Soc.
2016;19(1):20627.

27. Stuart RM, Haghparast-Bidgoli H, Panovska-Griffiths J, Grobicki L, Skordis
J, Kerr CC, Kedziora DJ, Martin-Hughes R, Kelly SL, Wilson DP. Applying
the ’no-one worse off’ criterion to design Pareto efficient HIV responses in
Sudan and Togo. AIDS. 2019;33(7):1247–52.

28. Kerr CC, Dura-Bernal S, Smolinski TG, Chadderdon GL, Wilson DP.
Optimization by adaptive stochastic descent. PLOS ONE. 2018;13(3):
0192944.

29. Larmarange J, Vallo R, Yaro S, Msellati P, Méda N. Methods for mapping
regional trends of HIV prevalence from Demographic and Health Surveys
(DHS). CyberGeo: Eur J Geography. 2011;558.

30. Magadi M, Desta M. A multilevel analysis of the determinants and
cross-national variations of HIV seropositivity in sub-Saharan Africa:
evidence from the DHS. Health & Place. 2011;17(5):1067–83.

31. Malawi Ministry of Health. Malawi Population-Based HIV Impact
Assessment (MPHIA) 2015-2016: Final Report. Lilongwe, Malawi: Malawi
Ministry of Health; 2018.

32. Montana LS, Mishra V, Hong R. Comparison of HIV prevalence estimates
from antenatal care surveillance and population-based surveys in
sub-Saharan Africa. Sexually Trans Infect. 2008;84(Suppl 1):78–84.

33. Diggle PJ, Tawn JA, Moyeed R. Model-based geostatistics. J Royal Stat
Soc: Ser C (Appl Stat). 1998;47(3):299–350.

34. Giorgi E, Diggle PJ, Snow RW, Noor AM. Geostatistical methods for
disease mapping and visualisation using data from spatio-temporally
referenced prevalence surveys. Int Stat Rev. 2018;86(3):571–97.

35. Cuadros DF, Li J, Mukandavire Z, Musuka GN, Branscum AJ, Sartorius B,
Mugurungi O, Tanser F. Towards unaids fast-track goals: targeting priority
geographic areas for HIV prevention and care in Zimbabwe. AIDS.
2019;33(2):305–14.

36. Emmanuel F, Blanchard J, Zaheer HA, Reza T, Holte-McKenzie M, et al.
The HIV/AIDS Surveillance Project mapping approach: an innovative
approach for mapping and size estimation for groups at a higher risk of
HIV in Pakistan. AIDS. 2010;24:77–84.

37. Stuart RM, Kerr CC, Haghparast-Bidgoli H, Estill J, Grobicki L, Baranczuk
Z, Prieto L, Montañez V, Reporter I, Gray RT, Skordis-Worrall J, Keiser O,
Cheikh N, Boonto K, Osornprasop S, Lavadenz F, Benedikt CJ,
Martin-Hughes R, Hussain SA, Kelly SL, Kedziora DJ, Wilson DP. Getting it

right when budgets are tight: using optimal expansion pathways to
prioritize responses to concentrated and mixed HIV epidemics. PLOS
ONE. 2017;12(10):0185077.

38. Fritsch FN, Carlson RE. Monotone piecewise cubic interpolation. SIAM J
Num Anal. 1980;17(2):238–46.

39. Karlsson G, Johannesson M. The decision rules of cost-effectiveness
analysis. Pharmacoeconomics. 1996;9(2):113–20.

40. Meyer-Rath G, Van Rensburg C, Larson B, Jamieson L, Rosen S. Revealed
willingness-to-pay versus standard cost-effectiveness thresholds:
evidence from the South African HIV Investment Case. PLOS ONE.
2017;12(10):0186496.

41. Schroeder SA. Incidence, prevalence, and hybrid approaches to
calculating disability-adjusted life years. Population Health Metrics.
2012;10(1):19.

42. The Optima Consortium for Decision Science. Optima HIV User Guide,
Volume VI: Parameter Data Sources. 2017. http://ocds.co/parameter-
data-sources. Accessed 20 Sept 2019.

43. Office of the US Global AIDS Coordinator. PEPFAR 3.0–Controlling the
Epidemic: Delivering on the Promise of an AIDS-Free Generation. Atlanta:
PEPFAR; 2014.

44. Jain S, Zorzi N. Investing for impact: the Global Fund approach to
measurement of AIDS response. AIDS Beh. 2017;21(1):91–100.

45. Kripke K, Chimbwandira F, Mwandi Z, Matchere F, Schnure M, Reed J,
Castor D, Sgaier S, Njeuhmeli E. Voluntary medical male circumcision for
HIV prevention in Malawi: Modeling the impact and cost of focusing the
program by client age and geography. PLOS ONE. 2016;11(7):0156521.

46. Meyer-Rath G, Johnson LF, Pillay Y, Blecher M, Brennan AT, Long L,
Moultrie H, Sanne I, Fox MP, Rosen S. Changing the South African
national antiretroviral therapy guidelines: the role of cost modelling. PLOS
ONE. 2017;12(10):0186557.

47. Chiu C, Johnson LF, Jamieson L, Larson BA, Meyer-Rath G. Designing an
optimal HIV programme for South Africa: does the optimal package
change when diminishing returns are considered? BMC Public Health.
2017;17(1):143.

48. Lessler J, Moore SM, Luquero FJ, McKay HS, Grais R, Henkens M, Mengel
M, Dunoyer J, M’bangombe M, Lee EC, et al. Mapping the burden of
cholera in sub-Saharan Africa and implications for control: an analysis of
data across geographical scales. Lancet. 2018;391(10133):1908-15.

49. Rheingans R, Anderson IV JD, Anderson B, Chakraborty P, Atherly D,
Pindolia D. Estimated impact and cost-effectiveness of rotavirus
vaccination in India: effects of geographic and economic disparities.
Vaccine. 2014;32:140–50.

50. Pearson R, Killedar M, Petravic J, Kakietek JJ, Scott N, Grantham KL,
Stuart RM, Kedziora DJ, Kerr CC, Skordis J, Shekhar M, Wilson DP.
Optima Nutrition: an allocative efficiency tool to reduce childhood
stunting by better targeting of nutrition-related interventions. BMC Public
Health. 2018;18(1):384.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://ocds.co/parameter-data-sources
http://ocds.co/parameter-data-sources

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Defining regions
	Budget-outcome curves
	Optimizing across regions
	Implementation in Optima HIV

	Results
	Computational analysis
	Application to Ukraine

	Discussion
	Conclusions
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/s12889-019-7681-5.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

